
Macaulay2
An Introduction

Matthew Weaver

Purdue University

January 2019

Matthew Weaver (Purdue University) Macaulay2 January 2019 1 / 13

So what is it?

I Macaulay2 is a computer algebra system for work in algebraic
geometry and commutative algebra.

I Can be used to compute certain invariants and run examples
I Some built-in functions include:

I Free resolutions, Betti tables, multiplicities etc.
I Dimension, codimension, depth, etc.
I Able to characterize important algebras: symmetric algebra, Rees

algebra, etc.

Matthew Weaver (Purdue University) Macaulay2 January 2019 2 / 13

Getting started

I Macaulay2 is built into the MATH office computers under
“programming”

I Can be downloaded onto any Linux machine and started from the
command line.

I Can be run via a remote desktop to the department servers (preferred
method for today)

I Can also be used online through Cornell’s emulator, Habanero

I Regardless you should arrive at a prompt that looks like this:

Matthew Weaver (Purdue University) Macaulay2 January 2019 3 / 13

Inputs and Outputs

I Your input lines are labelled by “i” and your outputs by “o” followed
by their number.

I Enter your command and hit“Enter” to run an input

I You may receive multiple outputs, such as a new label or a description

I Most of the common commands are already recognized by
Macaulay2, but you might need to load additional packages
depending on your needs

I A full list of commands can be found on the Macaulay2 website in the
index or documentation section

Matthew Weaver (Purdue University) Macaulay2 January 2019 4 / 13

Equalities and inequalities

Most of the time we care about relating numeric invariants and equality or
containments of certain objects:

I Macaulay2 has Four types of equalities:
I “=” : Used to assign a name or label to an object
I “:=” : Used to assign a name to a new local object
I “==”: Used to verify if two objects are equal in the normal sense
I “===”: Used to check if two objects are identically equal (be careful

with this one)

I “<” and “>” still represent less than / greater than

I Use “<=” and “>=” to denote less than or equal / greater than or
equal

Matthew Weaver (Purdue University) Macaulay2 January 2019 5 / 13

Writing your own commands and functions

I Start off by giving your command a name followed by “=”

I Next identify your inputs (use parentheses if multiple)

I Type “− >” and then what you want to do with your inputs

I Be careful! Once you hit enter and drop down a line (like if there’s an
open parenthesis and your program can’t run) you will not be able to
go back up

I Useful to write your commands in another program (notepad,
Overleaf, etc.) and then copy and paste into Macaulay2

Matthew Weaver (Purdue University) Macaulay2 January 2019 6 / 13

Exercise: S-pairs

Definition

Recall that for nonzero polynomials f and g of R = K [x1, . . . , xn] and
monomial ordering <, the S-Pair of f and g with respect to this ordering
is given by:

S(f , g) =
lcm

(
in<(f), in<(g)

)
cf in<(f)

f −
lcm

(
in<(f), in<(g)

)
cg in<(g)

g

where cf and cg represent the coefficients of the initial terms.

Exercise

Write a function that computes the S-pair of two polynomials.

Matthew Weaver (Purdue University) Macaulay2 January 2019 7 / 13

For Loops

I Used to parse through and indexed list and complete an operation at
each step

I Should look like:

For “index” from a to b when c do d

I The first two entries a and b represent the span of the list you wish
to go through

I The third entry c is any condition or restriction you wish to impose

I The last entry d is the actual operation you wish to perform

I Not all of these are necessary however!

Matthew Weaver (Purdue University) Macaulay2 January 2019 8 / 13

While Loops

I Used to repeatedly execute a command until specified conditions are
no longer met

I should look like:
while c do d

I The first entry c is the condition you impose and the second entry d
is the command you want executed

I May need to specify a starting value for your object if you have not
declared one already

I Be careful! Since this runs continually you must ensure the program
terminates

I May also need to ensure your object changes after each iteration so
that the necessary condition is eventually false

Matthew Weaver (Purdue University) Macaulay2 January 2019 9 / 13

Conditional Statements

I Should look like
if a then b

I If an input is entered that doesn’t fall into any of your cases, the null
output will be returned.

I Cover specified other cases with

else if c then d

I End with
else e

when you’ve exhausted all other possibilities or you don’t care about
the alternative cases

Exercise

Write a function to test whether a ring is Cohen-Macaulay or not.

Matthew Weaver (Purdue University) Macaulay2 January 2019 10 / 13

Conditional Statements

I Should look like
if a then b

I If an input is entered that doesn’t fall into any of your cases, the null
output will be returned.

I Cover specified other cases with

else if c then d

I End with
else e

when you’ve exhausted all other possibilities or you don’t care about
the alternative cases

Exercise

Write a function to test whether a ring is Cohen-Macaulay or not.

Matthew Weaver (Purdue University) Macaulay2 January 2019 10 / 13

Calling commands

I You can use any function you have created by calling it’s name

I Previous functions can be used to define new functions

I Tip: Write a bunch of smaller one-objective commands first and call
them when necessary

Exercise

Write a function to test whether a ring is Gorenstein or not.

Definition

Recall that for a local ring (R,m, k) and nonzero finite R-module M, the
type of M is

r(M) = dimk Ext
t
R(k,M)

where t = depthM.

Matthew Weaver (Purdue University) Macaulay2 January 2019 11 / 13

Calling commands

I You can use any function you have created by calling it’s name

I Previous functions can be used to define new functions

I Tip: Write a bunch of smaller one-objective commands first and call
them when necessary

Exercise

Write a function to test whether a ring is Gorenstein or not.

Definition

Recall that for a local ring (R,m, k) and nonzero finite R-module M, the
type of M is

r(M) = dimk Ext
t
R(k,M)

where t = depthM.

Matthew Weaver (Purdue University) Macaulay2 January 2019 11 / 13

Calling commands

I You can use any function you have created by calling it’s name

I Previous functions can be used to define new functions

I Tip: Write a bunch of smaller one-objective commands first and call
them when necessary

Exercise

Write a function to test whether a ring is Gorenstein or not.

Definition

Recall that for a local ring (R,m, k) and nonzero finite R-module M, the
type of M is

r(M) = dimk Ext
t
R(k,M)

where t = depthM.

Matthew Weaver (Purdue University) Macaulay2 January 2019 11 / 13

Tips when Writing Functions

I Comments can be made by typing ”- -”
I If you are using multiple mathematical objects, make sure they are

compatible! Useful commands to help with this are
I “module()”: turns a ring or ideal into a module
I “sub(,)”: Allows one to consider one object in a different setting

(example: extending ideals)
I When considering a module over two different rings, a tensor product

“**” can help distinguish which structure to use

I If you wish to stop a command that is still running (taking too long
or an infinite loop) enter Ctrl+C (not the copy shortcut)

Matthew Weaver (Purdue University) Macaulay2 January 2019 12 / 13

Tips for Writing Functions (cont.)

I Some commands can be time consuming and may never finish

I Be smarter than the computer! A lot of invariants can be computed
faster using known formulas and theorems: Auslander-Buchsbaum,
Dimension formulas, etc.

I A brief description of how a built-in command works can be found on
the Macaulay2 webpage

I Just because your code runs doesn’t mean it’s correct! Test it on
known results to be sure!

Matthew Weaver (Purdue University) Macaulay2 January 2019 13 / 13

