Macaulay2

An Introduction

Matthew Weaver (Purdue University)

Matthew Weaver

Purdue University

January 2019

Macaulay2 January 2019 1/13

So what is it?

Macaulay2 is a computer algebra system for work in algebraic
geometry and commutative algebra.
Can be used to compute certain invariants and run examples

Some built-in functions include:

Free resolutions, Betti tables, multiplicities etc.

Dimension, codimension, depth, etc.

Able to characterize important algebras: symmetric algebra, Rees
algebra, etc.

Matthew Weaver (Purdue University) Macaulay2 January 2019 2 /13

Getting started

Macaulay?2 is built into the MATH office computers under
“programming”

Can be downloaded onto any Linux machine and started from the
command line.

Can be run via a remote desktop to the department servers (preferred
method for today)

Can also be used online through Cornell's emulator, Habanero

Regardless you should arrive at a prompt that looks like this:

Matthew Weaver (Purdue University) Macaulay2 January 2019 3/13

Inputs and Outputs

e w_n

Your input lines are labelled by “i" and your outputs by “0" followed
by their number.

Enter your command and hit“Enter” to run an input
You may receive multiple outputs, such as a new label or a description

Most of the common commands are already recognized by
Macaulay2, but you might need to load additional packages
depending on your needs

A full list of commands can be found on the Macaulay2 website in the
index or documentation section

Matthew Weaver (Purdue University) Macaulay2 January 2019 4 /13

Equalities and inequalities

Most of the time we care about relating numeric invariants and equality or
containments of certain objects:
Macaulay? has Four types of equalities:

“="": Used to assign a name or label to an object

“:=" : Used to assign a name to a new local object
==": Used to verify if two objects are equal in the normal sense
==="": Used to check if two objects are identically equal (be careful
with this one)

“

“

<" and “>" still represent less than / greater than
Use “<=" and “>=" to denote less than or equal / greater than or
equal

Matthew Weaver (Purdue University) Macaulay2 January 2019 5/13

Writing your own commands and functions

Start off by giving your command a name followed by “=

Next identify your inputs (use parentheses if multiple)

‘

Type “— >" and then what you want to do with your inputs

Be careful! Once you hit enter and drop down a line (like if there's an
open parenthesis and your program can't run) you will not be able to
go back up

Useful to write your commands in another program (notepad,

Overleaf, etc.) and then copy and paste into Macaulay?2

Matthew Weaver (Purdue University) Macaulay2 January 2019 6 /13

Exercise: S-pairs

Recall that for nonzero polynomials f and g of R = K|[xq,...,x,] and
monomial ordering <, the S-Pair of f and g with respect to this ordering

is given by:

_ lcm(in<(f),in<(g)) f lcm(in<(f),in<(g))
crine () cgin<(g)

S(f.g) =

where ¢r and ¢, represent the coefficients of the initial terms.

Exercise
Write a function that computes the S-pair of two polynomials.

Matthew Weaver (Purdue University) Macaulay2 January 2019 7/13

Used to parse through and indexed list and complete an operation at
each step

Should look like:
For “index” from a to b when c do d_

The first two entries a and b represent the span of the list you wish
to go through

The third entry c is any condition or restriction you wish to impose
The last entry d is the actual operation you wish to perform

Not all of these are necessary however!

Matthew Weaver (Purdue University) Macaulay2 January 2019 8 /13

While Loops

Used to repeatedly execute a command until specified conditions are
no longer met

should look like:

while ¢ do d
The first entry c is the condition you impose and the second entry d
is the command you want executed
May need to specify a starting value for your object if you have not
declared one already

Be careful! Since this runs continually you must ensure the program
terminates

May also need to ensure your object changes after each iteration so
that the necessary condition is eventually false

Matthew Weaver (Purdue University) Macaulay2 January 2019 9 /13

Conditional Statements

Should look like
if a then b

If an input is entered that doesn't fall into any of your cases, the null
output will be returned.

Cover specified other cases with

else if ¢ then d_

End with
else e

when you've exhausted all other possibilities or you don't care about
the alternative cases

Matthew Weaver (Purdue University) Macaulay2 January 2019 10 / 13

Conditional Statements

Should look like
if a then b

If an input is entered that doesn't fall into any of your cases, the null
output will be returned.

Cover specified other cases with

else if ¢ then d_
End with
else e

when you've exhausted all other possibilities or you don't care about
the alternative cases

Write a function to test whether a ring is Cohen-Macaulay or not.

Matthew Weaver (Purdue University) Macaulay2 January 2019 10 / 13

Calling commands

You can use any function you have created by calling it's name
Previous functions can be used to define new functions

Tip: Write a bunch of smaller one-objective commands first and call
them when necessary

Matthew Weaver (Purdue University) Macaulay2 January 2019 11 /13

Calling commands

You can use any function you have created by calling it's name
Previous functions can be used to define new functions

Tip: Write a bunch of smaller one-objective commands first and call
them when necessary

Write a function to test whether a ring is Gorenstein or not.

Matthew Weaver (Purdue University) Macaulay2 January 2019 11 /13

Calling commands

You can use any function you have created by calling it's name
Previous functions can be used to define new functions

Tip: Write a bunch of smaller one-objective commands first and call
them when necessary

Exercise

Write a function to test whether a ring is Gorenstein or not.

Definition
Recall that for a local ring (R, m, k) and nonzero finite R-module M, the

type of M is
r(M) = dimy Exti(k, M)

where t = depth M.

Matthew Weaver (Purdue University) Macaulay2 January 2019 11 /13

Tips when Writing Functions

Comments can be made by typing "--"
If you are using multiple mathematical objects, make sure they are
compatible! Useful commands to help with this are
“module(__)": turns a ring or ideal into a module
“sub(__, _)": Allows one to consider one object in a different setting
(example: extending ideals)
When considering a module over two different rings, a tensor product
“**" can help distinguish which structure to use

If you wish to stop a command that is still running (taking too long
or an infinite loop) enter Ctrl+C (not the copy shortcut)

Matthew Weaver (Purdue University) Macaulay2 January 2019 12 /13

Tips for Writing Functions (cont.

Some commands can be time consuming and may never finish

Be smarter than the computer! A lot of invariants can be computed
faster using known formulas and theorems: Auslander-Buchsbaum,
Dimension formulas, etc.

A brief description of how a built-in command works can be found on
the Macaulay2 webpage

Just because your code runs doesn’'t mean it's correct! Test it on
known results to be sure!

Matthew Weaver (Purdue University) Macaulay2 January 2019 13 /13

